Slight change of pace with this week’s blog post, which will be a fairly condensed and self-indulgent affair – due to personal circumstances, I have been waylaid somewhat when it comes to producing content for the blog and I have also been unable to make any further progress with my new YouTube video series. Hoping that normal service will resume shortly, meaning additional videos and more content-rich blog posts, so stay tuned.

I’ve been running the CRM Chap blog for just over 2 years now. Over this time, I have been humbled and proud to have received numerous visitors to the site, some of whom have been kind enough to provide feedback or to share some of their Dynamics CRM/365 predicaments with me. Having reached such a landmark now seems to be good a time as any to take a look back on the posts that have received the most attention and to, potentially, give those who missed them the opportunity to read them. In descending order, here is the list of the most viewed posts to date on the crmchap.co.uk website:

  1. Utilising SQL Server Stored Procedures with Power BI
  2. Installing Dynamics CRM 2016 SP1 On-Premise
  3. Power BI Deep Dive: Using the Web API to Query Dynamics CRM/365 for Enterprise
  4. Utilising Pre/Post Entity Images in a Dynamics CRM Plugin
  5. Modifying System/Custom Views FetchXML Query in Dynamics CRM
  6. Grant Send on Behalf Permissions for Shared Mailbox (Exchange Online)
  7. Getting Started with Portal Theming (ADXStudio/CRM Portals)
  8. Microsoft Dynamics 365 Data Export Service Review
  9. What’s New in the Dynamics 365 Developer Toolkit
  10. Implementing Tracing in your CRM Plug-ins

I suppose it is a testament to the blog’s stated purpose that posts covering areas not exclusive to Dynamics CRM/365 rank so highly on the list and, indeed, represents how this application is so deeply intertwined with other technology areas within the Microsoft “stack”.

To all new and long-standing followers of the blog, thank you for your continued support and appreciation for the content ūüôā

As part of developing Dynamics CRM/Dynamics 365 Customer Engagement (CRM/D365CE) plug-ins day in, day out, you can often forget about the Execution Mode setting. This can be evidenced by the fact that I make no mention of it in my recent tutorial video on plug-in development. In a nutshell, this setting enables you to customise whether your plug-in executes in Synchronous or Asynchronous mode. Now, you may be asking Рjust what the hell does that mean?!? The best way of understanding is by rephrasing the terminology; it basically tells the system when you want your code to be executed. Synchronous plug-ins execute all of your business logic whilst the record is being saved by the user, with this action not being considered complete and committed to the backend database until the plug-in completes. By comparison, Asynchronous plug-ins are queued for execution after the record has been saved. A System Job record is created and queued alongside other jobs in the system via the Asynchronous Service. Another way of remembering the difference between each one is to think back to the options available to you as part of a Workflow. They can either be executed in real time (synchronously) or in the background (asynchronously). Plug-ins are no different and give you the flexibility to ensure your business logic is applied immediately or, if especially complex, queued so that the system has sufficient time to process in the background.

I came across a strange issue with an arguably even stranger Synchronous plug-in the other day, which started failing after taking an inordinately long time saving the record:

Unexpected exception from plug-in (Execute): MyPlugin.MyPluginClass: System.AggregateException: One or more errors occurred.

The “strange” plug-in was designed so that, on the Create action of an Entity record, it goes out and creates various related records within the application, based on a set of conditions. We originally had issues with the plug-in a few months back erroring, due to the execution time exceeding the 2 minute limit for sandbox plug-ins. A rather ingenious and much more accomplished developer colleague got around the issue by implementing a degree of asynchronous processing within the plug-in, achieved like so:

await Task.Factory.StartNew(() =>
{
    lock (service)
    {
        Stopwatch stopwatch = Stopwatch.StartNew();
        Guid record = service.Create(newRecord);
        tracing.Trace("Record with ID " + record.ToString() + " created successfully after: {0}ms.", stopwatch.ElapsedMilliseconds);
    }
});

I still don’t fully understand just exactly what this is doing, but I put this down to my novice level C# knowledge ūüôā The important thing was that the code worked…until some additional processing was added to the plug-in, leading to the error message above.

At this juncture, our only choice was to look at forcing the plug-in to execute in Asynchronous mode by modifying the appropriate setting on the plug-in step within the Plugin Registration Tool:

After making this change and attempting to create the record again in the application, everything worked as expected. However, this did create a new problem for us to overcome – end users of the application were previously used to seeing the related records created by the plug-in within sub-grids on the Primary Entity form, which would then be accessed and worked through accordingly. As the very act of creating these records now took place within the background and took some time to complete, we needed to display an informative message to the user to advise them to refresh the form after a few minutes. You do have the ability within plug-ins to display a custom message back to the user, but this is only in situations where you are throwing an error message and it didn’t seem to be a particularly nice solution for this scenario.

In the end, the best way of achieving this requirement was to implement a JScript function on the form. This would trigger whenever the form is saved and displays a message box that the user has to click OK on before the save action is carried out:

function displaySaveMessage(context) {

    var eventArgs = context.getEventArgs();
    var saveMode = eventArgs.getSaveMode();

    if (saveMode == 70 || saveMode == 2 || saveMode == 1 || saveMode == 59) {
        var message = "Records will be populated in the background and you will need to refresh the form after a few minutes to see them on the Sub-Grid. Press OK to save the record."
        Xrm.Utility.alertDialog(message, function () {
            Xrm.Page.data.save().then(function () {
                Xrm.Page.data.refresh();
            })
        });
    }
}

By feeding through the execution context parameter, you are able to determine the type of save action that the alert will trigger on; in this case, Save, Save & Close, Save & New and Autosave. Just make sure you configure your script with the correct properties on the form, which are:

  • Using the¬†OnSave event handler
  • With the¬†Pass execution context as first parameter setting enabled

From the end-users perspective, they will see something similar to the below when the record is saved:

It’s a pity that we don’t have similar kind of functionality exposed via Business Rules that enable us to display OnSave alerts that are more in keeping with the applications look and feel. Nevertheless, the versatility of utilising JScript functions should be evident here and can often achieve these types of bespoke actions with a few lines of code.

When it comes to plug-in development, understanding the impact and processing time that your code has within the application is important for two reasons Рfirst, in ensuring that end users are not frustrated by long loading times and, secondly, in informing the choice of Execution Mode when it comes to deploying out a plug-in. Whilst Asynchronous plug-ins can help to mitigate any user woes and present a natural choice when working with bulk operations within the application, make sure you fully understand the impact that these have on the Asynchronous Service and avoid a scenario where the System Job entity is queued with more jobs then it can handle.

This is an accompanying blog post to my YouTube video Dynamics 365 Customer Engagement Deep Dive: Creating a Basic Plug-in, the second in a series aiming to provide tutorials on how to accomplish developer focused tasks within Dynamics 365 Customer Engagement. You can watch the video in full below:

Below you will find links to access some of the resources discussed as part of the video and to further reading topics:

PowerPoint Presentation (click here to download)

Full Code Sample

using System;
using System.Globalization;

using Microsoft.Xrm.Sdk;

namespace D365.SamplePlugin
{
    public class PreContactCreate_FormatNameValues : IPlugin
    {
        public void Execute(IServiceProvider serviceProvider)
        {
            //Obtain the execution context from the service provider.

            IPluginExecutionContext context = (IPluginExecutionContext)serviceProvider.GetService(typeof(IPluginExecutionContext));

            //Extract the tracing service for use in debugging sandboxed plug-ins

            ITracingService tracingService = (ITracingService)serviceProvider.GetService(typeof(ITracingService));

            tracingService.Trace("Tracing implemented successfully!");

            if (context.InputParameters.Contains("Target") && context.InputParameters["Target"] is Entity)

            {
                Entity contact = (Entity)context.InputParameters["Target"];

                string firstName = contact.GetAttributeValue<string>("firstname");
                string lastName = contact.GetAttributeValue<string>("lastname");

                TextInfo culture = new CultureInfo("en-GB", false).TextInfo;

                if (firstName != null)
                {

                    tracingService.Trace("First Name Before Value = " + firstName);
                    contact["firstname"] = culture.ToTitleCase(firstName.ToLower());
                    tracingService.Trace("First Name After Value = " + contact.GetAttributeValue<string>("firstname"));

                }

                else

                {
                    tracingService.Trace("No value was provided for First Name field, skipping...");
                }

                if (lastName != null)

                {
                    tracingService.Trace("Last Name Before Value = " + lastName);
                    contact["lastname"] = culture.ToTitleCase(lastName.ToLower());
                    tracingService.Trace("Last Name After Value = " + contact.GetAttributeValue<string>("lastname"));
                }

                else

                {
                    tracingService.Trace("No value was provided for Last Name field, skipping...");
                }

                tracingService.Trace("PreContactCreate_FormatNameValues plugin execution complete.");

            }
        }
    }
}

Download/Resource Links

Visual Studio 2017 Community Edition

Setup a free 30 day trial of Dynamics 365 Customer Engagement

C# Guide (Microsoft Docs)

Source Code Management Solutions

Further Reading

MSDN – Plug-in development

MSDN – Supported messages and entities for plug-ins

MSDN – Sample: Create a basic plug-in

MSDN – Debug a plug-in

I’ve written a number of blog posts around plug-ins previously, so here’s the obligatory plug section ūüôā :

Interested in learning more about JScript Form function development in Dynamics 365 Customer Engagement? Then check out my previous post for my video and notes on the subject. I hope you find these videos useful and do let me know if you have any comments or suggestions for future video content.

This is an accompanying blog post to my YouTube video Dynamics 365 Customer Engagement Deep Dive: Creating a Basic Jscript Form Function, the first in a series that aims to provide tutorials on how to accomplish developer focused tasks within Dynamics 365 Customer Engagement. You can watch the video in full below:

Below you will find links to access some of the resources discussed as part of the video and to further reading topics.

PowerPoint Presentation (click here to download)

Full Code Sample

function changeAddressLabels() {

    //Get the control for the composite address field and then set the label to the correct, Anglicised form. Each line requires the current control name for 'getControl' and then the updated label name for 'setLabel'

    Xrm.Page.getControl("address1_composite_compositionLinkControl_address1_line1").setLabel("Address 1");
    Xrm.Page.getControl("address1_composite_compositionLinkControl_address1_line2").setLabel("Address 2");
    Xrm.Page.getControl("address1_composite_compositionLinkControl_address1_line3").setLabel("Address 3");
    Xrm.Page.getControl("address1_composite_compositionLinkControl_address1_city").setLabel("Town");
    Xrm.Page.getControl("address1_composite_compositionLinkControl_address1_stateorprovince").setLabel("County");
    Xrm.Page.getControl("address1_composite_compositionLinkControl_address1_postalcode").setLabel("Postal Code");
    Xrm.Page.getControl("address1_composite_compositionLinkControl_address1_country").setLabel("Country");

    if (Xrm.Page.getControl("address2_composite_compositionLinkControl_address2_line1"))
        Xrm.Page.getControl("address2_composite_compositionLinkControl_address2_line1").setLabel("Address 1");

    if (Xrm.Page.getControl("address2_composite_compositionLinkControl_address2_line2"))
        Xrm.Page.getControl("address2_composite_compositionLinkControl_address2_line2").setLabel("Address 2");

    if (Xrm.Page.getControl("address2_composite_compositionLinkControl_address2_line3"))
        Xrm.Page.getControl("address2_composite_compositionLinkControl_address2_line3").setLabel("Address 3");

    if (Xrm.Page.getControl("address2_composite_compositionLinkControl_address2_city"))
        Xrm.Page.getControl("address2_composite_compositionLinkControl_address2_city").setLabel("Town");

    if (Xrm.Page.getControl("address2_composite_compositionLinkControl_address2_stateorprovince"))
        Xrm.Page.getControl("address2_composite_compositionLinkControl_address2_stateorprovince").setLabel("County");

    if (Xrm.Page.getControl("address2_composite_compositionLinkControl_address2_postalcode"))
        Xrm.Page.getControl("address2_composite_compositionLinkControl_address2_postalcode").setLabel("Postal Code");

    if (Xrm.Page.getControl("address2_composite_compositionLinkControl_address2_country"))
        Xrm.Page.getControl("address2_composite_compositionLinkControl_address2_country").setLabel("Country");
}

Download/Resource Links

Visual Studio 2017 Community Edition

Setup a free 30 day trial of Dynamics 365 Customer Engagement

W3 Schools JavaScript Tutorials

Source Code Management Solutions

Further Reading

MSDN – Use JavaScript with Microsoft Dynamics 365

MSDN – Use the Xrm.Page. object model

MSDN – Xrm.Page.ui control object

MSDN – Overview of Web Resources

Debugging custom JavaScript code in CRM using browser developer tools (steps are for Dynamics CRM 2016, but still apply for Dynamics 365 Customer Engagement)

Have any thoughts or comments on the video? I would love to hear from you! I’m also keen to hear any ideas for future video content as well. Let me know by leaving a comment below or in the video above.

Working in-depth amidst the Sales entities (e.g. Product, Price List, Quote etc.) within Dynamics CRM/Dynamics 365 Customer Engagement (CRM/D365CE) can produce some unexpected complications. What you may think is simple to achieve on the outset, based on how other entities work within the system, often leads you in a completely different direction. A good rule of thumb is that any overtly complex customisations to these entities will mean having to get down and dirty with C#, VB.Net or even JScript. For example,¬†we’ve seen previously on the blog how,¬†with a bit of a developer expertise, it is possible to overhaul the entire pricing engine within the application to satisfy specific business requirements.¬†There is no way in which this can be modified directly through the application interface, which can lead to CRM deployments that make imaginative and complicated utilisation of features such as Workflows, Business Rules and other native features. Whilst there is nothing wrong with this approach per-say, the end result is often implementations that look messy when viewed cold and which become increasingly difficult to maintain in the long term. As always, there is a balance to be found, and any approach which makes prudent use of both application features and bespoke code is arguably the most desirous end goal for achieving certain business requirements within CRM/D365CE.

To prove my point around Sales entity “oddities”, a good illustration can be found when it comes to working with relationship field mappings and Product records. The most desirable feature at the disposal of CRM customisers is the ability to configure automated field mapping between Entities that have a one-to-many (1:N) relationship between them. What this means, in simple terms, is that when you create a many (N) record from the parent entity (1), you can automatically copy the field values to a matching field on the related entity. This can help to save data entry time when qualifying a¬†Lead to an¬†Opportunity, as all the important field data you need to continue working on the record will be there ready on the newly created¬†Opportunity record. Field mappings can be configured from the 1:N relationship setting window, via the¬†Mappings¬†button:

There are a few caveats to bear in mind – you can only map across fields that have the same underlying data type and you cannot map multiple source fields to the same target (it should be obvious why this is ūüôā ) – but on the whole, this is a handy application feature that those who are more accustomed to CRM development should always bear in the mind when working with CRM/D365CE.

Field mappings are, as indicated, a standard feature within CRM/D365CE Рbut when you inspect the field relationships between the Product and Quote Product entity, there is no option to configure mappings at all:

Upon closer inspection, many of the relationships between the¬†Product entity and others involved as part of the sales order process are missing the ability to configure field mappings. So, for example, if you have a requirement to map across the value of the¬†Description entity to a newly created¬†Quote Product¬†record, you would have to look at implementing a custom plugin to achieve your requirements. The main benefit of this route is that we have relatively unrestricted access to the record data we need as part of a plugin execution session and – in addition – we can piggyback onto the record creation process to add on our required field “in-flight” – i.e. whilst the record is being created. The code for achieving all of this is as follows:

using System;

using Microsoft.Xrm.Sdk;
using Microsoft.Xrm.Sdk.Query;

namespace D365.BlogDemoAssets.Plugins
{
    public class PreQuoteProductCreate_GetProductAttributeValues : IPlugin
    {
        public void Execute(IServiceProvider serviceProvider)
        {
            //Obtain the execution context from the service provider.

            IPluginExecutionContext context = (IPluginExecutionContext)serviceProvider.GetService(typeof(IPluginExecutionContext));

            //Get a reference to the Organization service.

            IOrganizationServiceFactory factory = (IOrganizationServiceFactory)serviceProvider.GetService(typeof(IOrganizationServiceFactory));
            IOrganizationService service = factory.CreateOrganizationService(context.UserId);

            //Extract the tracing service for use in debugging sandboxed plug-ins

            ITracingService tracingService = (ITracingService)serviceProvider.GetService(typeof(ITracingService));

            tracingService.Trace("Tracing implemented successfully!");

            if (context.InputParameters.Contains("Target") && context.InputParameters["Target"] is Entity)

            {
                Entity qp = (Entity)context.InputParameters["Target"];

                //Only execute for non-write in Quote Product records

                EntityReference product = qp.GetAttributeValue<EntityReference>("productid");

                if (product != null)

                {

                    Entity p = RetrieveProductID(service, product.Id);
                    string desc = p.GetAttributeValue<string>("description");
                    tracingService.Trace("Product Description = " + desc);
                    qp.Attributes["description"] = desc;

                }

                else

                {
                    tracingService.Trace("Quote Product with record ID " + qp.GetAttributeValue<Guid>("quotedetailid").ToString() + " does not have an associated Product record, cancelling plugin execution.");
                    return;
                }
            }
        }

        public Entity RetrieveProductID(IOrganizationService service, Guid productID)
        {
            ColumnSet cs = new ColumnSet("description"); //Additional fields can be specified using a comma seperated list

            //Retrieve matching record

            return service.Retrieve("product", productID, cs);
        }
    }
}

They key thing to remember when registering your Plugin via the Plugin Registration Tool (steps which regular readers of the blog should have a good awareness of) is to ensure that the Event Pipeline Stage of Execution is set to Pre-operation. From there, the world is your oyster Рyou could look at returning additional fields from the Product entity to update on your Quote Product record or you could even look at utilising the same plugin for the Order Product and Invoice Product entities (both of these entities also have Description field, so the above code should work on these entities as well).

It’s a real shame that Field Mappings are not available to streamline the population of record data from the Product entity; or the fact that there is no way to utilise features such as Workflows to give you an alternate way of achieving the requirement exemplified in this post. This scenario is another good reason why you should always strive to be a Dynamics 365 Swiss Army Knife, ensuring that you have a good awareness of periphery technology areas that can aid you greatly in mapping business requirements to CRM/D365CE.